Экспериментальная лаборатория Летающего Кота

Протокол взаимодействия плагинов fsiohub/xpiohub с устройствами ввода/вывода

ОГЛАВЛЕНИЕ

ИС	СТОРИЯ ДОКУМЕНТА	3
1.	ИНТЕРФЕЙС	3
2.	ЭЛЕМЕНТЫ ПРОТОКОЛА	3
3.	ПРОТОКОЛ ОБНАРУЖЕНИЯ УСТРОЙСТВА НА ЛИНИИ	4
4.	ФОРМАТ СОБЫТИЙ ВВОДА	5
5.	ФОРМАТ ВЫВОДА	6
	5.1 Алресация символов в ленте 7	

ИСТОРИЯ ДОКУМЕНТА

	Версия	Дата	Автор	Примечание
1	0.1	24.06.22	xflyingcat	Draft

1. ИНТЕРФЕЙС

Интерфейсом устройств может быть RS232 физический последовательный порт или виртуальный USB (класс устройств CDC). Бодовая скорость фиксированная 115200, 8N1 (8 бит, без бита паритета, 1 стоповый). Используются линии интерфейса RxD, TxD, DTR и GND. Должен быть предусмотрен аппаратный перезапуск устройства по линии DTR (как это делается на платах Arduino).

2. ЭЛЕМЕНТЫ ПРОТОКОЛА

Используется протокол ASCII (да, это не только название кодировки), это ещё и протокол.

Элементами протокола, которые должны использоваться устройством являются STX, ETX, ACK и все печатные символы, которые должны располагаться между символами STX и ETX. Для детальной информации смотреть таблицу 1.

Элементы протокола

Таблица 1

	Элемент протокола	Назначение	Кодировка ASCII	Кодировка XPIOhub/FSIOhub
1	STX	Start of text начало текста	0x02	{
2	ETX	End of text конец текста	0x03	}
3	ACK	Acknowledge подверждение	0x06	!

Например, в ситуации, когда данные поступают от плагина к устройству, на пакет

{any text}

устройство должно ответить АСК, то есть, отправить символ !

Другое дело, что содержимое может оказаться бесполезной нагрузкой, но это дело уже более верхнего уровня – приложения.

Передача данных от устройства к плагину не подтверждается элементом ACK со стороны плагина.

3. ПРОТОКОЛ ОБНАРУЖЕНИЯ УСТРОЙСТВА НА ЛИНИИ

Для того, чтобы не заботиться о том, на какой СОМ порт распределилось устройство, используется протокол обнаружения на линии. Плагин сначала определяет список доступных портов, затем производит опрос с целью определения уникального идентификатора (ID) устройства, в результате получается рабочая таблица соответствия СОМ порт ↔ ID. С точки зрения устройства процедура имеет вид:

- 1. Приложение отправляет в линию связи запрос обнаружения {DET}
- 2. Устройство отвечает символом! в качестве АСК
- 3. Устройство отправляет {Fxx}, где xx шестнадцатеричный идентификатор устройства.

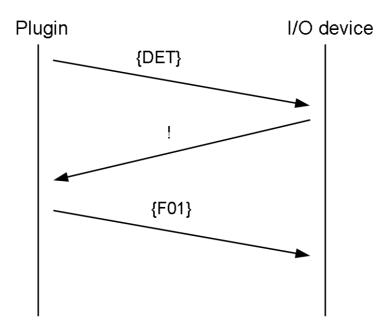


Рис.1

4. ФОРМАТ СОБЫТИЙ ВВОДА

Когда происходит событие ввода, в линию отправляются пакеты с форматом, описанным в таблице 2. Примечательно, что плагин никаким образом НЕ ПОДТВЕРЖДАЕТ приём события ввода

Спецификация событий ввода

Таблица 2

		Элементы протокола					
	Описание	Старт	Тип	Код	Значение	Стоп	
		·F	- ·· F	события	события	параметра	
1	Замыкание цепи	{	8	2 или 3		~	
	(тумблер SPDT)	,	_	символа	_	}	
2	Размыкание цепи	{	4	2 или 3		}	
	(тумблер SPDT)	(·	символа	-	}	
3	Событие энкодера	{	{ 2	2 или 3	-	}	
				символа			
4	Событие переключателя или	{	1	2 или 3		~	
	нажатия кнопки SPST	(_	символа	_	}	
5	Событие с параметром	{	A	2 или 3	4 символа	}	
	Сооытие с параметром	,		символа	4 символа	}	

Примечание1. Код события и значение параметра имеют шестнадцатеричную кодировку. Соответственно, двухсимвольные коды имеют диапазон 00...FF (всего 256 событий), а трёхсимвольные 000...FFF (всего 4096 событий).

Значение параметра имеет диапазон 0000...FFFF (от нуля до 65535).

Примечание 2. SPST – Single Pole Single Throw – однополюсный ключ или кнопка SPDT – Single Pole Double Throw – однополюсный переключатель на два положения

Примеры событий:

Замыкание и размыкание тумблера с номером события 225 $\{8E1\}\{4E1\}$, код события один. Трехбайтовая кодировка будет иметь вид $\{80E1\}\{40E1\}$

Инкремент и декремент энкодера с кодами событий 0 и 1 $\{200\}\{201\}$, кодов события два

Переключение многопозиционного ключа $\{10A0\}\{10A1\}\{10A2\}...$, всего кодов событий по числу полюсов переключателя.

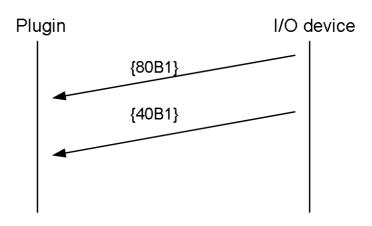


Рис.2

5. Формат вывода

Плагин отправляет на устройство две "ленты": состояние всех разрядов дискретного вывода (флаги, светодиоды) и сплошной массив символов, как показано в таблице 3.

Формат дискретного вывода

Таблица 3

		Элементы протокола			
	Описание	Старт	Преамбула	Данные	Стоп
1	Лента дискретного вывода	{	LED	Состояния светодиодов '1' или '0'	}
2	Лента символьного вывода	{	7SG	Печатные символы	}

Примечание 1. В ответ на принятые данные, устройство отвечает символом! (восклицательным знаком) в качестве АСК. В любом случае подтверждаются только пакеты, принятые от приложения.

Примечание 2. Расположение и размер актуальных данных на ленте определяется на этапе разработки устройства и должно быть известно при составлении файла конфигурации приложения.

Примечание 3. С содержимым лент устройство может поступать по своему усмотрению: отправить на устройство индикации, подвергнув или нет дополнительному форматированию или преобразовать для использования численных значений в качестве управляющих параметров для дополнительных исполнительных устройств (сервомоторы, шаговые двигатели).

Примерный поток данных от плагина к устройству показан на рисунке 3.

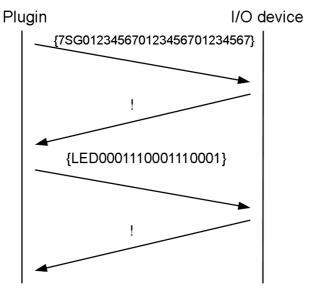


Рис. 3

5.1. Адресация символов в ленте

Принцип адресации в символьной ленте сложился во времена создания МСР на модулях восьмиразрядных семисегментных индикаторов и сохранился до настоящего времени. Назначение условного номера dev, позиции роѕ и длины параметра len - это произвол при распределении памяти в устройстве.

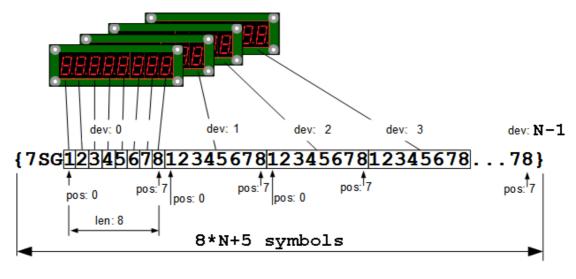


Рис.4

Адресация в дискретной ленте последовательная сквозная.